# John Nash Jr cytaty

## John Nash Jr

**Data urodzenia:** 13. Czerwiec 1928**Data zgonu:** 23. Maj 2015

John Forbes Nash Jr – amerykański matematyk i ekonomista.

### Podobni autorzy

### Cytaty John Nash Jr

### „Though I had success in my research both when I was mad and when I was not, eventually I felt that my work would be better respected if I thought and acted like a 'normal' person.“

— John Nash

As quoted in A Beautiful Mind, (2001); also cited in Quantum Phaith (2011), by Jeffrey Strickland, p. 197

### „People are always selling the idea that people with mental illness are suffering. I think madness can be an escape. If things are not so good, you maybe want to imagine something better. In madness, I thought I was the most important person in the world.“

— John Nash

As quoted in " A Brilliant Madness A Beautiful Madness http://www.pbs.org/wgbh/amex/nash/ (2002), PBS TV program; also cited in Doing Psychiatry Wrong: A Critical and Prescriptive Look at a Faltering Profession (2013) by René J. Muller, p. 62

### „I would not dare to say that there is a direct relation between mathematics and madness, but there is no doubt that great mathematicians suffer from maniacal characteristics, delirium and symptoms of schizophrenia.“

— John Nash

Statement of 1996, as quoted in Dr. Riemann's Zeros (2003) by Karl Sabbagh, p. 88

### „You don't have to be a mathematician to have a feel for numbers.“

— John Nash

Context: You don't have to be a mathematician to have a feel for numbers. A movie, by the way, was made — sort of a small-scale offbeat movie — called Pi recently. I think it starts off with a big string of digits running across the screen, and then there are people who get concerned with various things, and in the end this Bible code idea comes up. And that ties in with numbers, so the relation to numbers is not necessarily scientific, and even when I was mentally disturbed, I had a lot of interest in numbers.
Statement of 2006, partly cited in Stop Making Sense: Music from the Perspective of the Real (2015) by Scott Wilson, p. 117

### „One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the axioms actually determine the solution uniquely. The two approaches to the problem, via the negotiation model or via the axioms, are complementary; each helps to justify and clarify the other.“

— John Nash

Context: We give two independent derivations of our solution of the two-person cooperative game. In the first, the cooperative game is reduced to a non-cooperative game. To do this, one makes the players’ steps of negotiation in the cooperative game become moves in the noncooperative model. Of course, one cannot represent all possible bargaining devices as moves in the non-cooperative game. The negotiation process must be formalized and restricted, but in such a way that each participant is still able to utilize all the essential strengths of his position. The second approach is by the axiomatic method. One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the axioms actually determine the solution uniquely. The two approaches to the problem, via the negotiation model or via the axioms, are complementary; each helps to justify and clarify the other.
"Non-cooperative Games" in Annals of Mathematics, Vol. 54, No. 2 (September 1951)<!-- ; as cited in Can and should the Nash program be looked at as a part of mechanism theory? (2003) by Walter Trockel -->

### „At the present time I seem to be thinking rationally again in the style that is characteristic of scientists.“

— John Nash

Context: At the present time I seem to be thinking rationally again in the style that is characteristic of scientists. However this is not entirely a matter of joy as if someone returned from physical disability to good physical health. One aspect of this is that rationality of thought imposes a limit on a person's concept of his relation to the cosmos.

### „Gradually I began to intellectually reject some of the delusionally influenced lines of thinking which had been characteristic of my orientation. This began, most recognizably, with the rejection of politically-oriented thinking as essentially a hopeless waste of intellectual effort.“

— John Nash

Context: Gradually I began to intellectually reject some of the delusionally influenced lines of thinking which had been characteristic of my orientation. This began, most recognizably, with the rejection of politically-oriented thinking as essentially a hopeless waste of intellectual effort.

### „Any desired transferability can be put into the game itself instead of assuming it possible in the extra-game collaboration.“

— John Nash

Context: A less obvious type of application (of non-cooperative games) is to the study of. By a cooperative game we mean a situation involving a set of players, pure strategies, and payoffs as usual; but with the assumption that the players can and will collaborate as they do in the von Neumann and Morgenstern theory. This means the players may communicate and form coalitions which will be enforced by an umpire. It is unnecessarily restrictive, however, to assume any transferability or even comparability of the pay-offs [which should be in utility units] to different players. Any desired transferability can be put into the game itself instead of assuming it possible in the extra-game collaboration.
"Non-cooperative Games" in Annals of Mathematics, Vol. 54, No. 2 (September 1951); as cited in Can and should the Nash program be looked at as a part of mechanism theory? (2003) by Walter Trockel